Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explique les estimateurs statistiques pour les variables aléatoires et les distributions gaussiennes, en se concentrant sur les fonctions d'erreur pour l'intégration.
Aborde l'ajustement excessif dans l'apprentissage supervisé par le biais d'études de cas de régression polynomiale et de techniques de sélection de modèles.
Explore le compromis entre les variables de biais dans l'estimation des crêtes, montrant comment un peu de biais peut augmenter l'erreur carrée moyenne en réduisant la variance.
Discuter du compromis entre les variables biaisées dans l'apprentissage automatique, en mettant l'accent sur l'équilibre entre la complexité du modèle et l'exactitude des prédictions.