Couvre les modèles stochastiques de communication, se concentrant sur les variables aléatoires, les chaînes Markov, les processus Poisson et les calculs de probabilité.
Explore le théorème de Bayes pour la détection de pièces défectueuses, les variables aléatoires discrètes et les fonctions de distribution, avec des exemples pratiques et des exercices.
Couvre les distributions communes, les fonctions génératrices de temps et les matrices de covariance dans les statistiques pour la science des données.
Introduit des fonctions de masse de probabilité pour des variables aléatoires discrètes et diverses distributions, en mettant l'accent sur le calcul des attentes.
Explore des modèles stochastiques pour les communications, couvrant la moyenne, la variance, les fonctions caractéristiques, les inégalités, diverses variables aléatoires discrètes et continues, et les propriétés de différentes distributions.