Prévoir de nouveaux cycles de vie de produits : approche d'apprentissage automatique
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explique le regroupement des moyennes k, en attribuant des points de données à des grappes en fonction de la proximité et en minimisant les distances carrées à l'intérieur des grappes.
Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Contient les CNN, les RNN, les SVM et les méthodes d'apprentissage supervisé, soulignant l'importance d'harmoniser la régularisation et de prendre des décisions éclairées dans le domaine de l'apprentissage automatique.
Introduit un mini-projet où les étudiants prédisent les précipitations à Pully en utilisant l'apprentissage automatique, en mettant l'accent sur la reproductibilité et la qualité du code.
Couvre les techniques de réduction de dimensionnalité telles que PCA et LDA, les méthodes de clustering, l'estimation de la densité et la représentation des données.
Couvre les défis et les opportunités de l'exploration de données, des questions pratiques, des composants d'algorithmes et des applications telles que l'analyse du panier d'achat.