Explore les fondamentaux de l'apprentissage profond, y compris la classification de l'image, les principes de travail du réseau neuronal et les défis de l'apprentissage automatique.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Explore l'application de la physique statistique à la compréhension de l'apprentissage profond en mettant l'accent sur les réseaux neuronaux et les défis de l'apprentissage automatique.
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.
Explore l'évaluation de la précision et de la robustesse de la machine et de l'homme sur ImageNet, en soulignant les progrès, les défis et la nécessité d'améliorer.