Couvre les méthodes de calcul des systèmes moléculaires à température finie, en mettant l'accent sur l'échantillonnage stochastique et les simulations d'évolution du temps.
Couvre les modèles stochastiques de communication, se concentrant sur les variables aléatoires, les chaînes Markov, les processus Poisson et les calculs de probabilité.
Explore l'ergonomie et la distribution stationnaire dans les chaînes Markov, en mettant l'accent sur les propriétés de convergence et les distributions uniques.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Explore l'échantillonnage de rejet pour générer des valeurs d'échantillon à partir d'une distribution cible, ainsi que l'inférence bayésienne à l'aide de MCMC.