Séance de cours

La malédiction de la dimensionnalité dans l'apprentissage profond

Séances de cours associées (66)
Radar pénétrant au sol : analyse des données
Explore le picking automatisé des barres de renforcement dans les données radar pénétrantes au sol à l'aide de techniques d'apprentissage automatique et de traitement du signal.
Modélisation de données dans les neurosciences: Meenakshi Khosla
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Apprentissage sans supervision : regroupement et réduction de dimensionnalité
Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Réduction de dimensionnalité: PCA & Codeurs automatiques
Explore PCA, Autoencoders, et leurs applications dans la réduction de dimensionnalité et la production de données.
Réseaux neuronaux : formation et optimisation
Explore la formation, l'optimisation et les considérations environnementales des réseaux neuronaux, avec des informations sur les clusters PCA et K-means.
Boltzmann Machine
Couvre la machine de Boltzmann, un type de réseau neuronal récurrent stochastique.
Réduction de dimensionnalité: PCA & t-SNE
Explore PCA et t-SNE pour réduire les dimensions et visualiser efficacement les données à haute dimension.
Revue du Machine Learning
Couvre un examen des concepts d'apprentissage automatique, y compris l'apprentissage supervisé, la classification vs régression, les modèles linéaires, les fonctions du noyau, les machines vectorielles de soutien, la réduction de la dimensionnalité, les modèles génératifs profonds et la validation croisée.
Introduction à l'apprentissage automatique: modèles linéaires
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Les principes fondamentaux de l'apprentissage profond
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.