Introduit la méthode de différence finie pour l'approximation des dérivés et la résolution des équations différentielles dans les applications pratiques.
Discute des différences finies et des éléments finis, en se concentrant sur la formulation variationnelle et les méthodes numériques dans les applications d'ingénierie.
Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles, en se concentrant sur l'erreur de troncature locale, la stabilité et la continuité de Lipschitz.
Couvre l'organisation des cours, Jupyter Notebook pour l'expérimentation Python, les algorithmes, l'interpolation, la résolution d'équations, les systèmes linéaires et les applications pratiques.
Couvre la méthode des différences finies pour l'approximation des solutions aux équations différentielles par la discrétisation et les systèmes linéaires.