Couvre les modèles générateurs en mettant l'accent sur l'auto-attention et les transformateurs, en discutant des méthodes d'échantillonnage et des moyens empiriques.
Explore la dépendance dans les vecteurs aléatoires, couvrant la densité articulaire, l'indépendance conditionnelle, la covariance et les fonctions génératrices de moment.
Explore le taux de rendement, l'évaluation, la caractérisation du risque et la performance historique du portefeuille, en mettant l'accent sur les avantages de la diversification et l'analyse de la moyenne-variance.
Couvre l'algorithme Metropolis-Hastings et les approches basées sur les gradients pour biaiser les recherches vers des valeurs de vraisemblance plus élevées.