Explore Kernel K- signifie regroupement, interprétation des solutions, traitement des données manquantes, et sélection des ensembles de données pour l'apprentissage automatique.
Couvre l'apprentissage non supervisé axé sur les méthodes de regroupement et les défis rencontrés dans les algorithmes de regroupement comme K-means et DBSCAN.
Explore les méthodes et applications d'analyse de grappes dans l'analyse des données génomiques, y compris la classification, l'expression des gènes, la visualisation, les mesures de distance et les algorithmes de regroupement.
Examine les méthodes de regroupement pour la partition des données en classes significatives lorsque l'étiquetage est inconnu, couvrant les moyennes K, les mesures de dissimilarité et le regroupement hiérarchique.
Couvre la classification des images, le clustering et les techniques d'apprentissage automatique telles que la réduction de la dimensionnalité et l'apprentissage par renforcement.