Explore l'évolution des modèles d'intelligence visuelle, en mettant l'accent sur les Transformateurs et leurs applications dans la vision informatique et le traitement du langage naturel.
Discute des réseaux neuronaux convolutifs, de leur architecture, des techniques de formation et des défis tels que des exemples contradictoires en apprentissage profond.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Couvre les bases de l'apprentissage profond, y compris les représentations de données, le sac de mots, le prétraitement des données, les réseaux de neurones artificiels et les réseaux de neurones convolutifs.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Explore les réseaux neuronaux récurrents pour les données comportementales, couvrant le repérage de connaissances profondes, les réseaux LSTM, GRU, le réglage hyperparamétrique et les tâches de prévision de séries chronologiques.