Couvre l'intégration de Lebesgue des fonctions simples et l'approximation des fonctions non négatives par le bas en utilisant des fonctions constantes par morceaux.
Explore le concept d'intégrabilité de Lebesgue et les critères d'intégrabilité de Lebesgue, en soulignant l'importance des intégrales supérieures et inférieures.
Couvre le calcul intégral multivariable, y compris les cuboïdes rectangulaires, les subdivisions, les sommes du Douboux, le théorème de Fubini et l'intégration sur des ensembles délimités.
Explore l'intégrale de Lebesgue, où fonctionne les partitions auto-sélectionnées, conduisant à des ensembles mesurables et des complexités non mesurables.