Apprentissage non supervisé: théorème de Young-Eckart-Mirsky et introduction à PCA
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'analyse en composantes principales pour la réduction dimensionnelle des données biologiques, en se concentrant sur la visualisation et l'identification des modèles.
Explore les méthodes de clustering K-means et DBSCAN, en discutant des propriétés, des inconvénients, de l'initialisation et de la sélection optimale des clusters.
Explore PCA et LDA pour la réduction de dimensionnalité linéaire dans les données, en mettant l'accent sur les techniques de clustering et de séparation de classe.
Explore la décomposition de la valeur singulière et l'analyse des composantes principales pour la réduction de la dimensionnalité, avec des applications de visualisation et d'efficacité.
Explore les applications de la chimie quantique, en mettant l'accent sur le rôle de la densité électronique dans la prédiction des propriétés chimiques et en abordant les défis de la conception des catalyseurs, de la conversion de l'énergie solaire et de la synthèse des médicaments.
Couvre les bases de l'apprentissage automatique, y compris l'apprentissage supervisé et non supervisé, la régression, la classification et le regroupement.