Introduit des machines vectorielles de support, couvrant la perte de charnière, la séparation hyperplane et la classification non linéaire à l'aide de noyaux.
Explore les méthodes d'optimisation primaire-duelle, se concentrant sur les approches lagrangiennes et diverses méthodes comme la pénalité, la lagrangien augmentée, et les techniques de fractionnement.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité, les algorithmes et leurs applications pour assurer une convergence efficace vers les minima mondiaux.
Explique le processus de recherche d'une solution réalisable de base initiale pour les problèmes d'optimisation linéaire à l'aide de l'algorithme Simplex.
Explore l'optimisation primaire-duelle, la conjugaison des fonctions, la dualité forte, et les méthodes de pénalité quadratique en mathématiques de données.
Couvre les bases de l'optimisation, y compris les perspectives historiques, les formulations mathématiques et les applications pratiques dans les problèmes de prise de décision.
Discute de la descente de gradient stochastique et de son application dans l'optimisation non convexe, en se concentrant sur les taux de convergence et les défis de l'apprentissage automatique.