Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Explore un modèle de Markov de premier ordre à laide dun exemple de source ensoleillée-pluie, démontrant comment les événements passés influencent les résultats futurs.
Explore les classes communicantes dans les chaînes de Markov, en distinguant les classes transitoires et récurrentes, et approfondit les propriétés de ces classes.