S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Explore le théorème de Bayes pour la détection de pièces défectueuses, les variables aléatoires discrètes et les fonctions de distribution, avec des exemples pratiques et des exercices.
Discute des distributions de probabilité et du théorème de la limite centrale, en soulignant leur importance dans la science des données et l'analyse statistique.
Introduit des variables aléatoires continues et leurs distributions de probabilité, en mettant l'accent sur leurs applications en statistique et en science des données.
Couvre les variables aléatoires discrètes, la fonction de masse de probabilité, les propriétés et la distribution binomiale avec des exemples illustratifs.