Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore Kernel Ridge Regression, le Kernel Trick, Représenter Theorem, dispose d'espaces, matrice du noyau, prédiction avec les noyaux, et la construction de nouveaux noyaux.
Introduit des machines vectorielles de support, couvrant la perte de charnière, la séparation hyperplane et la classification non linéaire à l'aide de noyaux.
Explore les astuces du noyau dans les machines vectorielles de support pour un calcul efficace dans les espaces de grande dimension sans transformation explicite.
Explore le SVM non linéaire en utilisant des noyaux pour la séparation des données dans des espaces de dimension supérieure, optimisant l'entraînement avec des noyaux pour éviter des transformations explicites.
Explore l'apprentissage progressif avec LWPR, en discutant des défis, des données synthétiques, des applications du monde réel et de l'algorithme LWPR.