Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
S'insère dans les méthodologies complémentaires de choix discret et d'apprentissage automatique, couvrant les notations, les variables, les modèles, les processus de données, l'extrapolation, l'analyse de ce qu'il faut faire, et plus encore.
Explore la sélection des modèles dans la régression des moindres carrés, en abordant les défis de multicollinéarité et en introduisant des techniques de rétrécissement.
Explore diverses approches de régularisation, y compris la quasi-norme L0 et la méthode Lasso, en discutant de la sélection des variables et des algorithmes efficaces pour l'optimisation.
Compare L1 et L0 pénalisation en régression linéaire avec des conceptions orthogonales en utilisant des algorithmes gourmands et des comparaisons empiriques.
Couvre les probabilités, les variables aléatoires, les attentes, les GLM, les tests d'hypothèse et les statistiques bayésiennes avec des exemples pratiques.
Explorer l'analyse des composantes principales pour la réduction des dimensions des ensembles de données et ses implications pour les algorithmes d'apprentissage supervisés.
Explore la sélection de variables à travers des méthodes de filtrage et de corrélation dans l'apprentissage automatique, en mettant l'accent sur la quantification de la pertinence et la mesure des relations avec l'étiquette.