Explore les réseaux neuronaux récurrents pour les données comportementales, couvrant le repérage de connaissances profondes, les réseaux LSTM, GRU, le réglage hyperparamétrique et les tâches de prévision de séries chronologiques.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Couvre l'importance de la maintenance préventive pour la détection de la détresse de la chaussée et introduit des concepts d'apprentissage automatique pour les ingénieurs.