Fournit un aperçu des modèles linéaires généralisés, en mettant l'accent sur les modèles de régression logistique et de Poisson, et leur mise en oeuvre dans R.
Explore les modèles de mélange, y compris les mélanges discrets et continus, et leur application dans la capture de l'hétérogénéité du goût dans les populations.
Explore l'importance de la randomisation dans la spectrométrie de masse des protéines et la protéomique, en soulignant son rôle dans la minimisation des biais et la garantie de la validité de la recherche.
Couvre l'analyse causale des données d'observation, des pièges, des outils permettant de tirer des conclusions valables et d'aborder les variables confusionnelles.