Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Couvre les concepts fondamentaux de l'apprentissage automatique, y compris la classification, les algorithmes, l'optimisation, l'apprentissage supervisé, l'apprentissage par renforcement et diverses tâches telles que la reconnaissance d'images et la génération de texte.
Explore l'intelligence visuelle, la formation d'images, la vision par ordinateur et la compréhension de la représentation dans les machines et les esprits.
Discute des réseaux neuronaux convolutifs, de leur architecture, des techniques de formation et des défis tels que des exemples contradictoires en apprentissage profond.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.