Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les tests de ratio de vraisemblance, leur optimalité et les extensions dans les tests d'hypothèses, y compris le théorème de Wilks et la relation avec les intervalles de confiance.
Examine les tests d'hypothèse dans les statistiques, en mettant l'accent sur la prise de décision basée sur des données d'échantillon et le contrôle des probabilités d'erreurs.
Introduit des statistiques descriptives, des tests d'hypothèses, des valeurs p et des intervalles de confiance, soulignant leur importance dans l'analyse des données.
Fournit un aperçu de la théorie des probabilités de base, de l'ANOVA, des tests t, du théorème de limite centrale, des métriques, des intervalles de confiance et des tests non paramétriques.
Couvre l'estimation maximale de la probabilité, en mettant l'accent sur l'estimation-distribution ML, l'estimation de la réduction et les fonctions de perte.
Couvre les intervalles de confiance, les tests d'hypothèse, les erreurs standard, les modèles statistiques, la probabilité, l'inférence bayésienne, la courbe ROC, la statistique Pearson, la bonté des tests d'ajustement et la puissance des tests.