Explore la méthodologie MODNet pour les prévisions des biens matériels, en mettant l'accent sur la sélection des caractéristiques et l'apprentissage supervisé.
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Explore les bases de l'apprentissage automatique, les conditions conflictuelles, les répercussions sur la vie privée et les défis de déploiement, mettant en évidence les biais et les menaces contradictoires.
Explore l'apprentissage supervisé en matière de tarification des actifs, en mettant l'accent sur les défis de la prévision du rendement des actions et l'évaluation des modèles.
Explore l'inférence des connaissances pour les graphiques, en discutant de la propagation des étiquettes, des objectifs d'optimisation et du comportement probabiliste.
Couvre les faits stylisés du rendement des actifs, des statistiques sommaires, des tests de la normalité, des placettes Q-Q et des hypothèses de marché efficaces.