Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Couvre les principes fondamentaux de l'apprentissage profond, y compris les données, l'architecture et les considérations éthiques dans le déploiement de modèles.
Introduit des intégrations de mots, expliquant comment ils capturent les significations des mots en fonction du contexte et de leurs applications dans les tâches de traitement du langage naturel.