Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'analyse des données bivariées dans les biostatistiques appliquées, couvrant la corrélation, la régression, la sélection des modèles et le diagnostic.
Explore les matrices de corrélation, la régression, la variance, les intervalles de confiance et les systèmes normalisés dans la modélisation statistique.
Explore la régression linéaire gaussienne, la matrice de conception, l'estimation des moindres carrés et l'interprétation géométrique dans l'analyse de régression linéaire.
Explore la régression linéaire à travers les moindres carrés et les équations normales, en soulignant l'importance de minimiser les erreurs pour des prédictions précises.
Introduit des bases de régression linéaire du point de vue de la minimisation empirique des risques, couvrant la perte carrée, le prétraitement des données et le calcul du gradient.
Explore la vérification du modèle et les résidus dans lanalyse de régression, en soulignant limportance des diagnostics pour assurer la validité du modèle.