Couvre la transformée de Fourier, ses propriétés, ses applications dans le traitement du signal et les équations différentielles, en mettant l'accent sur le concept de dérivées devenant des multiplications dans le domaine des fréquences.
Introduit des équations différentielles ordinaires, leur ordre, des solutions numériques et des applications pratiques dans divers domaines scientifiques.
Explore les équations différentielles linéaires, y compris les équations linéaires homogènes d'ordre supérieur et les équations à coefficients constants.
Couvre la résolution des équations différentielles inhomogènes linéaires et la recherche de leurs solutions générales en utilisant la méthode de variation des constantes.