Explore les géométries non euclides, hyperboliques et sphériques, défiant la géométrie traditionnelle euclidienne avec des implications pour les mathématiques modernes.
Présente des éléments euclidiens, explore l'unicité de l'infini, des lignes parallèles et différentes géométries comme l'euclidienne, hyperbolique et sphérique.
Introduit les fondamentaux de la géométrie euclidienne, couvrant les triangles équilatéraux, les symétries, les axes radicaux et les figures architecturales anciennes.
Explore les transformations géométriques et les invariances modernes, en mettant l'accent sur la géométrie projective et les développements historiques.