Explore l'IA socialement consciente pour la mobilité des derniers milles, se concentrant sur la compréhension des étiquettes sociales, l'anticipation des comportements et la prévision des mouvements de foule.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Explore les mathématiques de l'apprentissage profond, les réseaux neuronaux et leurs applications dans les tâches de vision par ordinateur, en abordant les défis et le besoin de robustesse.
Discute de la navigation par quadritor en utilisant l'apprentissage de renforcement profond et le contrôle de bas niveau, en mettant l'accent sur l'intelligence visuelle et la robustesse du modèle de regard.
Explore la classification des images en utilisant des arbres de décision et des forêts aléatoires pour réduire la variance et améliorer la robustesse du modèle.
Explore le transfert de style, la traduction d'images, l'apprentissage auto-supervisé, la prédiction vidéo et la génération de description d'images à l'aide de techniques d'apprentissage en profondeur.
Plongez dans le deep learning pour la classification des images et des objets dans les systèmes IoT, y compris les techniques de clustering et les problèmes de confidentialité.
Se penche sur les perspectives géométriques des modèles d'apprentissage profond, explorant leur vulnérabilité aux perturbations et l'importance de la robustesse et de l'interprétabilité.