Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le Dropout en tant que méthode de régularisation dans les réseaux neuronaux profonds, en mettant l'accent sur sa mise en œuvre pratique et son efficacité.
Déplacez-vous dans la recherche graphique, les réseaux neuronaux et l'apprentissage profond, couvrant des sujets tels que les réseaux neuronaux convolutionnels et les réseaux neuronaux artificiels.
Couvre les bases du traitement du langage naturel, y compris la tokenisation, le marquage en partie de la parole et l'intégration, et explore des applications pratiques comme l'analyse du sentiment.
Discute des implications éthiques des systèmes NLP, en mettant l'accent sur les biais, la toxicité et les préoccupations en matière de protection de la vie privée dans les modèles linguistiques.
Explore la prédiction des rendements de réaction avec des modèles d'apprentissage en profondeur et l'importance d'ensembles de données de haute qualité en chimie.
Déplacez-vous dans la façon dont la structure et le fonctionnement biologiques sont décodés par l'apprentissage non supervisé des séquences protéiques.
Explore le décodage à partir de modèles neuronaux dans le NLP moderne, couvrant les modèles encodeurs-décodeurs, les algorithmes de décodage, les problèmes avec le décodage argmax, et l'impact de la taille du faisceau.