Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les conclusions de la théorie de l'apprentissage statistique, en mettant l'accent sur la complexité des fonctions, la généralisation et le compromis biais-variance.
Explore la généralisation, la sélection des modèles et la validation dans l'apprentissage automatique, en soulignant l'importance de l'évaluation impartiale des modèles.
Explore les représentations factorisées pour la planification, en se concentrant sur la réduction de la complexité et l'amélioration de l'efficacité grâce à une modélisation distincte des fonctionnalités.
Explore les choix discrets et l'apprentissage automatique comme méthodes complémentaires, en discutant de l'apprentissage supervisé, des avantages du modèle, des pièges, des biais d'agrégation, de la classification probabiliste et des données de panel.
Explore le choix des architectures de réseaux graphes neuraux, en évaluant la complexité du modèle et les performances à partir de statistiques de données.
Explore la sélection, l'évaluation et la généralisation des modèles dans l'apprentissage automatique, en mettant l'accent sur l'estimation impartiale des performances et les risques de surapprentissage.
Explore l'apprentissage auto-supervisé, l'apprentissage par transfert, les tâches de prédiction SSL, l'apprentissage des fonctionnalités, les rotations d'images, l'apprentissage contrasté et les apprenants en vision.