Explore la surparamétrie, la généralisation, le surajustement, le sous-ajustement et la régularisation implicite dans les modèles d'apprentissage profond.
Couvre les techniques d'apprentissage supervisées et non supervisées dans l'apprentissage automatique, en mettant en évidence leurs applications dans la finance et l'analyse environnementale.
Explore le surajustement dans la régression polynomiale, en soulignant l'importance de la généralisation dans l'apprentissage automatique et les statistiques.
Couvre un examen des concepts d'apprentissage automatique, y compris l'apprentissage supervisé, la classification vs régression, les modèles linéaires, les fonctions du noyau, les machines vectorielles de soutien, la réduction de la dimensionnalité, les modèles génératifs profonds et la validation croisée.
Explore l'ajustement de la courbe polynomiale, les fonctions du noyau et les techniques de régularisation, en soulignant l'importance de la complexité du modèle et du surajustement.