Couvre la probabilité maximale d'estimation dans l'inférence statistique, en discutant des propriétés MLE, des exemples et de l'unicité dans les familles exponentielles.
Explore l'inférence statistique, la suffisance et l'exhaustivité, en soulignant l'importance de statistiques suffisantes et le rôle de statistiques complètes dans la réduction des données.
Explore l'inférence statistique pour les modèles linéaires, couvrant l'ajustement du modèle, l'estimation des paramètres et la décomposition de la variance.
Couvre les bases de la théorie des probabilités, y compris les définitions, les calculs et les concepts importants pour l'inférence statistique et l'apprentissage automatique.
Explore les modèles paramétriques, les techniques d'estimation, les modèles de régression et les classificateurs basés sur les scores dans l'analyse des données.
Introduit la probabilité, les statistiques, les distributions, l'inférence, la probabilité et la combinatoire pour étudier les événements aléatoires et la modélisation en réseau.
Introduit des concepts d'inférence statistique, en se concentrant sur l'estimation des paramètres, les estimateurs non biaisés et l'estimation moyenne à l'aide de variables aléatoires indépendantes.