Couvre les principes fondamentaux et l'analyse de stabilité des systèmes de contrôle en réseau, y compris l'installation de logiciels, les systèmes dynamiques, les états d'équilibre et les tests de stabilité.
Introduit les bases de l'algèbre linéaire, du calcul et de l'optimisation dans les espaces euclidien, en mettant l'accent sur la puissance de l'optimisation en tant qu'outil de modélisation.
Couvre l'approche de programmation linéaire de l'apprentissage par renforcement, en se concentrant sur ses applications et ses avantages dans la résolution des processus décisionnels de Markov.
Couvre les bases de la programmation non linéaire et ses applications dans le contrôle optimal, en explorant des techniques, des exemples, des définitions d'optimalité et les conditions nécessaires.
Explore l'application de la théorie du contrôle pour gérer les processus d'agrégation des protéines, en se concentrant sur les fibres amyloïdes et leurs implications dans diverses maladies.