Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles ordinaires, en mettant l'accent sur l'impact des erreurs sur la précision et la stabilité de la solution.
Explore les méthodes numériques itératives pour résoudre les équations, en mettant l'accent sur les critères de convergence, les erreurs et l'impact des valeurs de départ.
Couvre la convergence des méthodes de points fixes pour les équations non linéaires, y compris les théorèmes de convergence globale et locale et lordre de convergence.
Explore les concepts de taux de convergence linéaire et quadratique, en soulignant leurs différences et leurs applications dans les méthodes numériques.