Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur la prédiction de la structure des protéines grâce à l'analyse des contacts avec les acides aminés et à des méthodes informatiques avancées.
Explore l'information mutuelle dans les données biologiques, en mettant l'accent sur son rôle dans la quantification de la dépendance statistique et l'analyse des séquences protéiques.
Couvre les mesures d'information telles que l'entropie, la divergence Kullback-Leibler et l'inégalité de traitement des données, ainsi que les noyaux de probabilité et les informations mutuelles.
Explore la prédiction de la structure des protéines à partir des données de séquence en utilisant la modélisation de l'entropie maximale et discute des progrès récents dans la prédiction de la structure des protéines.
Discute de l'équidistribution conjointe des points CM, du lemma 10.1, des conditions de fractionnement, des hypothèses continues et des concepts d'entropie.
Explore les informations mutuelles pour quantifier la dépendance statistique entre les variables et déduire des distributions de probabilité à partir de données.