Couvre les critères d'estimation des paramètres, en soulignant l'importance de la cohérence, du biais, de la variance et de l'efficacité des estimateurs.
Couvre les bases de la régression linéaire, des variables instrumentales, de l'hétéroscédasticité, de l'autocorrélation et de l'estimation du maximum de vraisemblance.
Couvre les bases de la régression linéaire, y compris l'OLS, l'hétéroskédasticité, l'autocorrélation, les variables instrumentales, l'estimation maximale de la probabilité, l'analyse des séries chronologiques et les conseils pratiques.
Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.