Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Examine la généralisation des classificateurs ImageNet, les applications critiques pour la sécurité, le surajustement et la fiabilité des modèles d'apprentissage automatique.
Plongez dans l'importance des fonctionnalités, de l'évolution des modèles, des défis d'étiquetage et de la sélection des modèles dans l'apprentissage automatique.
Introduit des concepts d'apprentissage automatique appliqués tels que la collecte de données, l'ingénierie des caractéristiques, la sélection des modèles et les mesures d'évaluation du rendement.
Explore les mesures d'évaluation des modèles, les techniques de sélection, le compromis biais-variance et la gestion des distributions de données biaisées dans l'apprentissage automatique.
Explore les bases de l'apprentissage automatique, les conditions conflictuelles, les répercussions sur la vie privée et les défis de déploiement, mettant en évidence les biais et les menaces contradictoires.
Explore l'évaluation des modèles avec K-Nearest Neighbor, couvrant la sélection optimale de k, les mesures de similarité et les mesures de performance pour les modèles de classification.
Explore l'apprentissage automatique en imagerie cérébrale, en se concentrant sur les schémas spatiaux, les émotions et les compromis entre classificateurs.
Discute du surajustement, de la sélection des modèles, de la validation croisée, de la régularisation, des représentations de données et de la gestion des données déséquilibrées dans l'apprentissage automatique.