Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Explore les caractéristiques de la distribution normale, les scores Z, la probabilité dans les statistiques inférentielles, les effets d'échantillon et l'approximation de la distribution binomiale.
Explore Markov Chain Monte Carlo pour l'échantillonnage des distributions haute dimension et l'optimisation des fonctions à l'aide de l'algorithme Metropolis-Hastings.
Explore l'intégration Monte-Carlo pour approximer les attentes et les variances à l'aide d'échantillonnage aléatoire et discute des composants d'erreur dans les modèles de choix conditionnel.
Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.