Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'inférence bayésienne pour les variables aléatoires gaussiennes, couvrant la distribution articulaire, les pdf marginaux et le classificateur Bayes.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Explore les modèles thématiques, les modèles de mélange gaussien, la répartition des dirichlets latents et l'inférence variationnelle dans la compréhension des structures latentes à l'intérieur des données.
Explore les mots, les jetons, les n-grammes et les modèles linguistiques, en mettant l'accent sur les approches probabilistes pour l'identification des langues et la correction des erreurs d'orthographe.
Présente l'attribution des dirichlets latents pour la modélisation des sujets dans les documents, en discutant de son processus, de ses demandes et de ses limites.
Introduit l'estimation bayésienne, qui couvre l'inférence classique par rapport à l'inférence bayésienne, les antécédents conjugués, les méthodes MCMC et des exemples pratiques comme l'estimation de la température et la modélisation de choix.
Explore les lexiques, les n-grammes et les modèles de langage, soulignant leur importance dans la reconnaissance des mots et l'efficacité des n-grammes pour diverses tâches.