Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.
Couvre les bases des mesures de probabilité, des propriétés, des exemples, de la mesure de Lebesgue et de la terminologie liée aux espaces et aux événements de probabilité.
Introduit le cours sur la mesure et l'intégration, en se concentrant sur le développement d'une nouvelle théorie pour surmonter les limites de l'intégrale de Riemann.