Explore les machines vectorielles de support, maximisant la marge pour une classification robuste et la transition vers la SVM logicielle pour les données séparables non linéairement.
Couvre l'inférence statistique, l'apprentissage automatique, les SVM pour la classification des pourriels, le prétraitement des courriels et l'extraction des fonctionnalités.
Explore les modèles linéaires, la régression logistique, les métriques de classification, la MVS et leur utilisation pratique dans les méthodes de science des données.
Couvre les bases de l'apprentissage automatique, y compris la reconnaissance des chiffres manuscrits, la classification supervisée, les limites de décision et l'ajustement des courbes polynômes.
Explore Support Vector Machines, couvrant la marge ferme, la marge souple, la perte de charnière, la comparaison des risques et la perte de charnière quadratique.