Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre le théorème d'extension de Caratheodory, l'unicité et l'existence de mesures de probabilité, de variables aléatoires de Bernoulli et d'espaces de variables aléatoires.
Discute de la distribution de Dirichlet, de l'inférence bayésienne, de la moyenne postérieure et de la variance, des antécédents conjugués et de la distribution prédictive dans le modèle de Dirichlet-Multinôme.
Explore les méthodes avancées d'acceptation-rejet, l'échantillonnage à partir de la distribution normale et la génération de variables aléatoires multivariées.
Explore les techniques bayésiennes pour les problèmes de valeur extrême, y compris l'inférence de la chaîne Markov Monte Carlo et de Bayesian, en soulignant l'importance de l'information antérieure et l'utilisation des graphiques.
Explore des promenades aléatoires, le processus Moran et des exemples de génétique des populations, de modélisation de l'abondance des protéines et de chimiotaxie bactérienne.
Couvre les processus de Markov, les densités de transition et la distribution sous réserve d'information, en discutant de la classification des états et des distributions fixes.
Couvre les bases de la génération de texte et les défis de l'évaluation du texte généré à l'aide de mesures de chevauchement de contenu, de mesures fondées sur des modèles et d'évaluations humaines.