Enregistrement fonctionnel: Invariant d'échelle rapide
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discuter de la façon dont l'apprentissage de caractéristiques éparses peut conduire à une suradaptation dans les réseaux neuraux malgré des preuves empiriques de généralisation.
Explore le transfert de style, la traduction d'images, l'apprentissage auto-supervisé, la prédiction vidéo et la génération de description d'images à l'aide de techniques d'apprentissage en profondeur.
Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.
Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.
Explore les règles de voisinage les plus proches, les défis de l'algorithme k-NN, le classificateur Bayes et l'algorithme k-means pour le regroupement.
Explore le picking automatisé des barres de renforcement dans les données radar pénétrantes au sol à l'aide de techniques d'apprentissage automatique et de traitement du signal.
Explore l'apprentissage auto-supervisé, l'apprentissage par transfert, les tâches de prédiction SSL, l'apprentissage des fonctionnalités, les rotations d'images, l'apprentissage contrasté et les apprenants en vision.