Explore les méthodes de descente de gradient pour les problèmes convexes lisses et non convexes, couvrant les stratégies itératives, les taux de convergence et les défis d'optimisation.
Explore le rôle du calcul dans les mathématiques de données, en mettant l'accent sur les méthodes itératives, l'optimisation, les estimateurs et les principes d'ascendance.
Couvre les méthodes itératives pour résoudre des équations linéaires et analyser la convergence, y compris le contrôle des erreurs et les matrices définies positives.
Explore coordonner les stratégies d'optimisation de descente, en mettant l'accent sur la simplicité dans l'optimisation grâce à des mises à jour coordonnées et en discutant des implications des différentes approches.
Couvre des méthodes de descente de gradient plus rapides et une descente de gradient projetée pour une optimisation contrainte dans l'apprentissage automatique.