Couvre les concepts fondamentaux de l'algèbre linéaire, y compris les équations linéaires, les opérations matricielles, les déterminants et les espaces vectoriels.
Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.
Explore la transformation de base, les valeurs propres et les opérateurs linéaires dans les espaces intérieurs des produits, en soulignant leur importance dans la mécanique quantique.
Couvre les valeurs propres, les vecteurs propres et la séquence de Fibonacci, en explorant leurs propriétés mathématiques et leurs applications pratiques.