Denoising avec auto-encodeur et modèle de mélange gaussien
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'analyse des composantes principales pour la réduction de dimensionnalité, en explorant ses applications, ses limites et l'importance de choisir les composantes appropriées.
Explore la décomposition de la valeur singulière et l'analyse des composantes principales pour la réduction de la dimensionnalité, avec des applications de visualisation et d'efficacité.
Explore la classification des données textuelles, en se concentrant sur des méthodes telles que les bayes naïques et les techniques de réduction de la dimensionnalité telles que l'analyse des composantes principales.
Explore la correspondance des données non linéaires avec des dimensions plus élevées à l'aide de la SVM et couvre l'expansion des caractéristiques polynomiales, la régularisation, les implications sonores et les méthodes d'ajustement des courbes.
Couvre les bases des réseaux neuronaux, des fonctions d'activation, de la formation, du traitement d'image, des CNN, de la régularisation et des méthodes de réduction de dimensionnalité.
Explore les techniques d'apprentissage non supervisées pour réduire les dimensions des données, en mettant l'accent sur l'APC, l'ADL et l'APC du noyau.