Couvre les bases de la régression linéaire, y compris l'OLS, l'hétéroskédasticité, l'autocorrélation, les variables instrumentales, l'estimation maximale de la probabilité, l'analyse des séries chronologiques et les conseils pratiques.
Explore l'hétéroskédasticité en économétrie, en discutant de son impact sur les erreurs standard, les estimateurs alternatifs, les méthodes d'essai et les implications pour les tests d'hypothèses.
Explore le modèle de régression linéaire, les propriétés de l'OLS, les tests d'hypothèse, l'interprétation, les transformations et les considérations pratiques.
Introduit une régression linéaire simple, les propriétés des résidus, la décomposition de la variance et le coefficient de détermination dans le contexte de la loi d'Okun.
Explore la théorie de la distribution des estimateurs des moindres carrés dans un modèle linéaire gaussien, en mettant l'accent sur la construction des intervalles de précision et de confiance.
Couvre les statistiques descriptives, les tests d'hypothèses et l'analyse de corrélation avec diverses distributions de probabilités et des statistiques robustes.
Introduit une analyse de régression pour la modélisation de données multivariées, couvrant l'algèbre matricielle, l'interprétation des coefficients et les intervalles d'essai.