Explore les approches dynamiques de la théorie spectrale des opérateurs, en mettant l'accent sur les opérateurs auto-adjoints et les opérateurs Schrödinger avec des potentiels définis dynamiquement.
Explore l'hypothèse de thermalisation d'état propre dans les systèmes quantiques, en mettant l'accent sur la théorie de la matrice aléatoire et le comportement des observables dans l'équilibre thermique.
Explore les attracteurs et leur stabilité dans les systèmes dynamiques, y compris les points fixes, les orbites périodiques et les attracteurs chaotiques.
Par Yakov Pesin se penche sur le phénomène essentiel de coexistence dans la dynamique hamiltonienne, explorant les types I et II et fournissant des exemples et des preuves.