Régression non paramétrique : estimation basée sur le noyau
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur l'analyse de la consommation d'oxygène, couvrant la régression, l'interprétation des erreurs et l'application du modèle Michaelis-Menten.
Explore Kernel Ridge Regression, le Kernel Trick, Représenter Theorem, dispose d'espaces, matrice du noyau, prédiction avec les noyaux, et la construction de nouveaux noyaux.
Explore les représentations structurales équivariantes dans l'apprentissage machine atomistique, soulignant l'importance de représenter les propriétés cibles dans la base sphérique.
Discute des méthodes du noyau, en se concentrant sur les surajustements, la sélection des modèles et les fonctions du noyau dans l'apprentissage automatique.
Explore les techniques d'apprentissage automatique pour la régression non linéaire et la prévision des tendances dans des ensembles de données complexes.
Discute des méthodes du noyau dans l'apprentissage automatique, en se concentrant sur la régression du noyau et les machines vectorielles de support, y compris leurs formulations et applications.