Couvre les récipients à pression linéaire, les coquilles minces et la pression critique de flambage, en mettant l'accent sur la réduction dimensionnelle de 3D à 2D.
Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Explore les surfaces quadratiques dans l'espace 3D, en discutant des hyperboloïdes et de leurs équations cartésiennes, soulignant l'importance des cadres de référence.
Discute des applications du calcul dans le calcul des longueurs et des surfaces de révolution, en mettant l'accent sur le calcul intégral et les interprétations géométriques.