Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles, en se concentrant sur l'erreur de troncature locale, la stabilité et la continuité de Lipschitz.
Explore la monotonie inverse dans les méthodes numériques pour les équations différentielles, en mettant l'accent sur les critères de stabilité et de convergence.
Introduit des équations différentielles ordinaires, leur ordre, des solutions numériques et des applications pratiques dans divers domaines scientifiques.
Explore des méthodes numériques telles que Crank-Nicolson, Heun, Euler et RK4 pour résoudre les ODE, en mettant l'accent sur l'estimation des erreurs et la convergence.
Fournit un aperçu de l'analyse des mécanismes avancés utilisant la méthode des éléments finis et l'analyse des éléments finis dans les applications d'ingénierie.